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Nonequilibrium-molecular-dynamics investigation of the presmectic behavior
of the viscosities of a Gay-Berne nematic liquid crystal
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(Received 31 March 1999

Using the method of nonequilibrium molecular dynamics, the behavior of thedViez, Helfrich, and
Leslie viscosities as functions of temperature and density are investigated. In particular, attention is focused on
the region immediately preceding the nematic-smectic phase transition. Tsewilie viscosityz, for the
orientation parallel to the direction of flow and the Helfrich viscosjty are both found to increase rapidly as
the phase transition is approached. In most of the cases investigated, a critical expeéeiatfound. Values
closer t0v=%1 are also found, but in these cases, the errors are sufficiently Iarge:férto be possible. No
nonregular behavior of the viscosity coefficients, 73, v;, andy, in the presmectic region was detected.
[S1063-651X99)01710-9

PACS numbse(s): 61.30-v, 61.20.Ja, 62.16:s, 66.20:-d

I. INTRODUCTION Thus, up to now, there has been little simulation data
available on the presmectic behavior of the, Mieicz coef-

For a nematic liquid crystal, the viscosity is a function of ficients, with most of the work mentioned focusing on a
the average orientation of the molecules with respect to th&ingle state point, rather than a range of temperatures or den-
flow velocity and its gradient. The shear viscosity is characSities. This is not surprising considering the demands made
terized by four quantities: the Nsewicz viscositiesy, (i on_compqtational resources py even fairly simpl_e models for
—1,2,3)[1], and the Helfrich viscosity;;, [2]. Two further ~ @nisotropic fluids. However, it was felt that taking a more
quantities of interest, the Leslie viscosities and y, [3], detailed look at the way the presence of the nematic-smectic

arise due to the torque acting on the molecules. These coetlr-"’”.1Sition affegts rheological properties would be a worth-
ficients depend not only on the temperat(we density, but while undertaking.

also on the proximity of the system to a phase boundary. In .The work presented here. IS structgrgd as fo.IIows_: Alter
. . . : this Introduction, the theoretical description of viscosity for
this work, attention will be focused on presmectic effects.

Althouah the effect of t t the Vi itV of an anisotropic fluid is summarized. In the following section,
ough the etiect of temperature on the VISCOSIy Of ay,a effect of temperature and density variation as well as that
freely flowing liquid crystal was first measurgdl] at the end

of an external field on the various coefficients of viscosity
of the last century, measurements of the temperature depeQze giscussed. In Sec. IV, details of the simulation method
dence of the coefficientsy and y; close to the nematic-  gre given. Section V comprises the results and their interpre-
smectic transition have only been available since the midation. The conclusions are presented in the final section.
1970s[5-12|. Divergent behavior fory; andy, is found for

several substances, but it has often proved difficult to deter- Il. VISCOSITY COEFFICIENTS

mine critical exponents. , _ OF A NEMATIC LIQUID CRYSTAL
Viscous flow in nematic fluids has also been investigated _ _ N _ _
using the methods adquilibrium molecular dynamicéviD) In order to specify the various coefficients of viscosity, an

and nonequilibrium molecular dynamiodlEMD) at single ~ ansatz must be made for the friction pressure tensar.isf
state point§13,14. For perfectly oriented particles interact- the mass density of a fluid, the flow velocity, and Cartesian
ing via a soft-sphere potential with an additional anisotropiccoordinates are used, then the equation for the balance of
term of P, symmetry a reversal of the inequalify < 7, for ~ linear momentum may be written as
temperatures just above the nematic-smectic transition has q
been found15]. e _

The Miesowicz coefficients of the standard Gay-Berne pﬁV“+VVPV?‘+V”pV”_O’ @
system have been obtained as a function of temperature for
one density using MD and the Green-Kubo relatiph6]. ~ where the substantial time derivative is given bydt
Although a sharp rise i, was observed just above,,, the  =d/dt+v,V, . The total pressure tensBr,, has been sepa-
critical exponent was not determined. Results have also beeated into its equilibrium parPfijl and the friction pressure
obtained in the case of a soft-sphere potential plus a dipoleéensorp,,, .
dipole interaction{17]. Here, a reordering of the Nsewicz For an isotropic fluid, the friction pressure tensor depends
coefficientsy, and 7, is found as the relative strength of the only on the spatial derivatives of the velocity field and the
anisotropic term is increased. Simulations using the Gayeorresponding coefficients of viscosity. However, in the case
Berne potential and a director-based coordinate sy$i&fh of a nematic liquid crystal, the translational motion is
show good agreement with the results[@B] for a single  coupled with the rotational motion. The orientation of the
state point as far ag, and 75 are concerned. However, a nematic may be described by a so-callditector field
considerable discrepancy exists for bathand y;. n(r,t).
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For the friction pressure tenspy,, an ansat{19] is made

which takes into account the nematic symmetry and assumes

linearity in the velocity gradient and the corotational time
derivative of the directoN:

—pyu=ain,n,mn, Iy +an N, +azn,N,+a,l,,

+ a’5nvn)\1—‘)\/¢+ a’Gn,u,n)\r)\V_l— gln)\nKr)\KE/.LV

+on,n, Vv + 43V 6,,, 3]
where
d
NMZanM—E”w\wyn)\. (3)

The gradient of the velocity ,v,, has been decomposed into
its isotropic, antisymmetric, and symmetric traceless parts:

VVVﬂ:§V)\V)\5ﬂV+EV}L)\CU)\+FVM, (4)
wherew, is the vorticity:
1

wh=§ehaﬁvavﬂ, (5)

andl",, the deformation rate tensor, which is the symmetric

traceless partdenoted by ]sy) of the velocity gradient ten-
sor:

1 1
FV,(L:[VVV,LL]ST:E(VVV;L+VMVV)_ §V)\V)\5;LV' (6)

The coefficientsyq, . . . ,ag, known as the Leslie coeffi-
cients, and the coefficients, {,, and{s all have the dimen-
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m=5(as+ag), (12
7]2:5(6(2-1-013), (13

~ 1
ns=zai, (14
Y1= a3 Ay, (19
Yo= ap— as, (16)

1
7/v=§§2+§37 (17
1

K:§1+ §(a1+a5+a6). (18)

The nine viscosity coefficients of Eq2) are reduced to
seven due to two Onsager symmetry relations, which yield

27,= 72, (19
which is equivalent to
aytaz=ag—as, (20)
and
{Hr=k. (22

As mentioned already, the Miewicz coefficients of vis-
cosity are defined for certain orientations of the molecules
with respect to the applied shear:

sions of a viscosity. Thus, once the velocity and director

fields are known, the components of the friction pressure

tensor may be calculated in terms of theand¢; .
Decomposition of the friction pressure tensor yields

[pv,u]ST: - 277FVﬂ_ 2‘-;71[“1/“)\1_‘)\,(1,]51'_ 2‘;72 [nVN,u]ST

- Z%S[nvnM]STn)\nKF)\K_ gZ [nvn,u,]STV)\V)\ '

(7
p;a/,u: ’Yl(nvN,u.)a—i_ ‘}/2(nvn)\r)\,u,)a1 (8)
1
§p>\>\:_77vv>\V>\_Kn>\nxr>\K- )
The antisymmetric part of a tens®r,,, is given by
. 1
=5 (Tou= T o). (10

The viscosity coefficients appearing in Eq3)—(8) are re-
lated to those of Eq(2) via

1

n=5 : (11

1
ayt §(a5+a6)

ov

~Pyx= ﬂiﬁ—yx, i=1,2,3,4. (22

For Couette flow, the velocity field is given by
=(I'y,0,0), wherel" is the shear rate, and thu8y,/dy
=T.

Hence, one obtains the following relationships between
the Miesowicz viscosities and the coefficients used in the
ansatz Eq(2):

1
7]1=§(a4+a6+ a’3), (23)
772:§(a4+ as— ay), (24)
1
N3=5 A (25

The shear viscosity is characterized by four coefficients for
this geometry and so a further quantity is needed. The Hel-
frich viscosity, 71, [2], is defined as

N12=404—2( 71+ 72), (26)
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where 7, is the viscosity obtained for the orientation in the lar potential used and here was taken to be the volume of an
xy plane which makes an angle of 45° with respect to theellipsoid of rotation with short and long axes of length 0.5

direction of flow. This leads to and 1.5, respectively, the unit of length being the short mo-
lecular diameter.
M12= Q. (27) For an anisotropic fluid, the behavior is somewhat differ-

ent, particularly in the vicinity of a phase transition. In the
case of the nematic-smectic transition, there is expected to be
1 a contribution to the viscosity which depends on tuher-
yl:F(piy— p}l,x+ p)z(y— pix) (28)  ence lengtl¥ of the smectic order, which is the distance over
which the smectic order parameter persists in the nematic
phase.
According to the mean-field approa¢R3], the depen-
dence ofé on temperature is given by

The Leslie viscositiesy; and y,, are given by

and

yam (P~ PLi— b2+ P2y (29
X X X X/
e E~(T=Tp) 12 (33
wherep' is the («,r) component of the friction pressure i idi ' -
v ' However, assuming the validity of de Gennes’s analogy be

tensor for the orientation parallel to thexis. Equation(19)  tween the nematic-smectic phase change and the normal-
implies superfluid transition in liquid heliurfi24], one infers

Y2= M1 2. (30 E~(T-T,) 22 (34

The MigOWiCZ, HelfriCh, and Leslie viscosities are all The re|ati0nship between the coherence |ength and the

accessible to experiment. Thus, values extracted from simygiesowicz viscosities is given by Haig and Brochardi25].
lations may be compared with experimentally obtained re-They find the expressions

sults. Furthermore, a theoretical prediction of the relative

sizes of they; and y; based on a modified affine transform St~ £12) (35)
approach may be given in terms of the axis ratio of ellipsoi- _ _
dally symmetric particlef20]. Thus one obtains information aS™M~ 5, (36)
about thea;, but the{; are not determined here. . ' .
a(zlflt: aZI’It: a(slflt: 0’ (37)
Ill. TEMPERATURE AND DENSITY DEPENDENCE aSt= ySit= et (38)

Any quantification of changes in viscous behavior as ayhere the superscript “crit’ indicates that contribution of
phase transition is approached requires a functional form fojhe quantity due to thermal fluctuation of the smectic order
the dependency. According to the reaction-rate approach, thesrameter abovd,,. Thus, from the expressions for the

dependency of the viscosity on the temperature in isotropigjiesowicz viscosities, and for the Helfrich viscosity, one
liquids is given approximately by an expression of thegptains
Arrhenius type:
crit crit 1/2
~ i~ &5, 39

n=aexp E/kgT), 31) Uit 39
crit__ _crit_
where E>0 is an activation energykg Boltzmann’s con- 72 =13 =0. (40
stant, T the temperature, arala constanf21]. In the nematic

eter on temperature is weak compared to that in @B4)
[21].
A form for the variation of the viscosity as a function of p(T)=aexpe/T)+b(T-T,.) ", (41)
density may be given in terms of tHeee volume V;=V
—V,,, WhereV is the specific volume of the fluid\{  wherev is ; for the mean-field approach agdaccording to
=1/p) andV,, is the specific volume of the moleculg®2].  the helium analogy.
One then hag)(V)=aexd eV, /(V-V,)], or, in terms of the It must be borne in mind that increasing the temperature
density, will lead to an increase in the effective volume of the par-
ticles due to the increased rotational fluctuation. At constant
Vim pressure the total volume can change and thus compensate
n(p)Ian[< el/p—vm>’ (32 for the effect on the free volume. In this case the Arrhenius
law can be expected to apply and the viscosity will fall with
wherea is the low density limit of viscosityin general not increasing temperature. However, at constaolume no
the same aa of Eq. (31)], ande a dimensionless parameter. such compensation can take place, and thus although the
Within the framework of a computer simulatiod,, may be increase in translational kinetic energy will still act to reduce
determined approximately from the form of the intermolecu-the viscosity, the accompanying increase in the rotational

has the form
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FIG. 1. The Misowicz viscosities as functions of density for
T=0.95 with B=0.90, N=500: 7; (@), 7, (A), and n; (H)
with fits (regular component—, divergent component — —),
andN=1372: 5, (O).

FIG. 2. n, (@), 5, (A), and n; (W) as functions of density
for T=0.95 with B=0.35, together with fitregular component
—, divergent component — —) .

L . . IV. SIMULATION METHOD
kinetic energy will have the opposite effect. Therefore, the

behavior is more complicated than in the case of constant The simulations were performed using standard constant
pressure. In particular, even a fall in viscosity with decreastemperature and volume molecular-dynamics techniques.
ing temperature is possible. The Gay-Berne potentigR6] was used with the parameters
Expressions corresponding to those for the temperature =2, v=1, k=3, and«’=5 to model the intermolecular
may be obtained for the density dependence of the criticahteraction, the phase diagram for these values being known
components of the viscosities. A transition temperafiireat ~ [27]. The equations of translational and rotational motion
which a phase transition in a liquid crystal occurs will be awere derived from the derivative of the potential with respect
function of the density. Thus, assuming tfat is a linear  to the intermolecular displacement vector and the molecular
function of p, one has orientation vector, respectively. The potential was truncated
and shifted at a cutoff radius ofe4, whereo is the width
of the molecules. The equations were then solved via a Ver-
let velocity algorithm[28]. The mass and the moment of
inertia were chosen to be equal to unity, with the time step
being of length O.OOlEs(loéleLJ), wheree ; is the reference
energy. Lees-Edwards periodic boundary conditi¢@$]
were used to generate the shear. The temperature derived
from the translational motion was held constant by means of

* p of T-Tp a profile-unbiased Gaussian thermogt@], which simply

1-—=~1-— p " =pot
p

T*(p)=Tg +T*"(p—po), (42
wherep is a particular density an@* ' the derivative ofT*
with respect top. For a certain temperaturg, this then
yields 1-T*/T=1—[T§+T*'(p—po))/T. Therefore,

T (43 involves rescaling the peculiar velocities. The rotational mo-

tion was not explicitly thermostated, as the coupling to the
translational motion was found to be strong enough to pro-
duce satisfactory equipartition of the total kinetic energy.
(fnless mentioned otherwise, 500 particles were used. How-
ever, a few simulations were carried out with=1372, in
order to check for possible finite-size effects.

Newtonian viscosities were obtained by evaluating the ap-
propriate components of the pressure tensor for various val-
ues of the shear rafgypically 0.01, 0.02, 0.03, 0.04, 0.05 in
reduced unitsand extrapolating to zero shear rate under the
assumption that there is no shear-rate dependency in this
regime.

The orientation of the particles must be fixed in a certain
direction in order to allow the calculation of the M@wicz
coefficients. This can either be done by means of a constraint

Thus, Eq.(43) means that the critical exponent for the
density dependency is the same as that for the temperatu
dependency. Together with E@2), this leads to an expres-
sion for the viscosity as a function of density very similar to
Eq. (41):

m

77(p)=aex4 “Tp—v.

Again, for simplicity, the same symbols for the parameters
b, ande as in Eq.(41) have been used, although in general
they are obviously numerically different. As abo¥g, is the
specific volume of a molecule.

+b(ppa—p) " (44)

TABLE I. Fit parameters for the density dependence with TABLE Il. Fit parameters for the density dependence with

=0.95,B=0.90. =0.95,B=0.35.

7, div.  b=0.03:0.01 »=0.39x0.08 p,,=0.23:0.01 7, div. b=0.04:0.02 »=0.56-0.23 p,,=0.30=0.02
7. reg.  a=0.04:0.01 €=2.34+0.93 7, reg.  a=0.08:0.02 €=1.25:0.71

72, 16g.  a=0.13+0.02 €=4.80x0.30 72, reg.  a=0.14+0.02 €=4.46x0.21

73 reg.  a=0.05:0.01 €=4.28+0.24 7, reg.  a=0.08+:0.01 €=3.32£0.16
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FIG. 3. v, (@) with fit (——) and -y, (O) with fit (= = =) FIG. 4. y; (@) with fit (—) and — y, (O) with fit (— — =)
as functions of density fof =0.95 withB=0.90. as functions of density fof =0.95 withB=0.35.

algorithm [31], or via an additional potential term which )

makes the alignment of the molecules with the field energetif€Sults forN=1372 agree reasonably well with those for

cally more favorable. Here, the latter approach was taken ang 200, particularly for the higher densities. The fits, fér

the simulation box chosen to be twice as long in the directiori= 500, were performed using E¢#4). For 7, two fits were

parallel to the field as in the perpendicular directions. Themade, one for the regular component using data up to a den-

effect on the viscosity of the variation of the field strength inSity p=0.20 and one for the divergent term over the full

the range before orientational saturation sets in has also beéange. The difference between the two fits becomes pro-

studied[32]. nounced in the presmectic region. Only the regular term was
The energy densit,,, which arises due to the coupling used to fitn, and »;. The fit parameters are given in Table

between a molecule and an applied magnetic Bl taken |- ) ) - )
to be In Fig. 2, the viscosities are shown f&=0.35, with T

=0.95, as above. The most obvious difference is the density
1 _ at which the phase transition occurs. Again #pr, both the
fu=- oMo Ax([uu]sr:[BB]s0), (49) regular componeniusing data up tp=0.26) and the diver-
gent components were fitted, and fgp and z; only the
whereA x= x| —x., x| andy, being the susceptibility par- regular part. From Table I, the critical exponentfor B
allel and perpendicular to the director, respectiely[33]).  =0.90 is seen to correspond rather well to the helium anal-
The orientation-dependent part reduces tdy  ogy prediction of. For the weaker field3=0.35, v is rather
=—2uy*Ax(u,B,)?, and differentiating with respect to,  large, but the inaccuracy is such to allgw(Table II). How-
one obtainsdfy /du,=— o *Ax(uyB,)B,. It is conve- ever, the result for the transition density is in agreement with

nient to introduce a dimensionless quan@&y : that inferred from plots of structural data as a function of

density. Comparing the two figures, one sees that the
B = VAx/movoyle By, (46)  strength of the field has a large effect on the density at which

the nematic-smectic transition occurs.

which leads tadf/du,= —(u\B})BZ% . In the following, the Data are available for the dependence of the ddveicz

asterisk will be omitted. The torque due to the field exertedviscosities on temperature. However, due to the weakness of

on particlei is then this effect at constant pressure, no results are given here.

TV=(u;-B)u;xB. (47

B. Leslie and Helfrich viscosities

The dependence of the Leslie viscositigsandy, on the
density forB=0.90 is shown in Fig. 3. One sees that the
A. Miesowicz coefficients relationship| y,| > vy, is valid throughout the nematic region,
although the fits suggest that there is crossing of the viscosi-
ties for densities very close to the transition density.

There is, however, no indication that either of the two
quantities diverge, as has been found experimentally and pre-
gicted theoretically. The fit parameters are given in Table Ill.

V. RESULTS

The Miesowicz coefficients as functions of density fbr
=0.95 and an external fielB=0.90 are shown in Fig. 1.

As the density increases, the ratio @f:7; becomes
smaller, with the two viscosities becoming nearly equal im-
mediately before the nematic-smectic phase transition. Th

TABLE lIl. Fit parameters for the density dependence with TABLE IV. Fit parameters for the density dependence vilith
=0.95,B=0.90. =0.95,B=0.35.

i a=0.07+0.01 €=5.86+0.35 1 a=0.09+0.01 €=4.78+0.19
— s a=0.12+0.02 €=4.69+0.46 s a=0.12+0.02 €=4.46+0.27
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FIG. 5. 54, as a function of temperature wifh=0.275 andB
=0.35forT,s=0.92 —) andT,s=0.89 — — —).

The corresponding results f&=0.35 can be seen in Fig.
4 (see also Table IV. Again, the absolute valueygfremains
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TABLE V. Fit parameters for the temperature dependence of

Ths b c v
0.89 1.14-1.34 —4.28+1.85 0.34£0.19
0.92 0.82£1.06 —3.68+1.39 0.29:0.20

|v2(p)|>v1(p) is fulfilled. However, the difference be-
comes smaller as the transition is approached.

For B=0.35, 71(p) exhibits critical behavior at the tran-
sition, but the error is so large that botl= 3 andv=3 are
possible. Both#n,(p) and 73(p) approximately obey an
Arrhenius law, as doyi(p) and y,(p), with |y,(p)|
>y,(p). Both v=% and v=3 are possible values of the
critical exponent forn5(T).

Thus, critical exponents for the viscositieg and 7.,
and, hence for the correlation length, in broad agreement

larger thany,, although the convergence point is beyond theWith de Gennes'’s helium analogy have been found. How-
transition density. Here, too, the behavior of the viscosities i€Ver, neithery, nor vy, display a change of behavior at the
described better by a fit of the Arrhenius form, rather thanPhase transition, which is in contrast to the prediction of

one with a divergent term.

Jéhnig and Brochard, and, foy,, with experimental evi-

As can be seen in Fig. 5, the Helfrich viscosity divergesdence. o _ _ .
as the temperature is reduced towards the nematic-smectic 10 explain this one may consider the relative magnitudes

transition. Sincer;, can be of either sign, Eq4l) was

modified in anad hoc manner by retaining the divergent from Eg.(23), one hasy;" = y;
term but replacing the Arrhenius term by a constant term,

thus yielding
1A T)=b(T—=Tye) "+cC. (48)

However, the parameters of the fit using E48) were

of the critical contributions. Using Eq20) to eliminateag
crit crit and

2
crit

crit__ _crit__
= = 1

M2 = 0y -1y (49

(5_
&
where¢ and¢, are the correlation lengths parallel and per-
pendicular to the director, respectively. Experimental values

subject to very large errors. Thus, the data were fitted for twdor &;/¢, range from about 3 to around [@]. Thus, any
specific, fixed values of ., both of which were deemed to presmectic rise in viscosity should be strongestifgs. The
be plausible on the basis of the structural data. The resultinggason critical behavior is seen fgg but not fory; may be
curves are shown in the figure and the ensuing parametegonnected with the fact that, wheregg is determined from

are given in Table V.
As one sees, the errors are rather large. Howeveeems

a single component of the pressure tensar,s calculated
from a linear combination of four components. Eq. (28)]

rather insensitive to the exact position of the phase chang@nd thus subject to much greater error. Whijg, is also

and for both the transition temperatures chosgris the
more likely value forv, although$ cannot be ruled out,

obtained from a linear combination of components, the effect
for this viscosity is expected to be many times larger than

particularly since the statistics are rather poor close to théhat for 7, or y;.

phase transition.

VI. CONCLUSIONS

Obviously no true divergence may be seen in the com-
puter simulation, since any effect due to increasing correla-
tion lengths is obviously limited by the finite size of the
simulation box. Thus, at the nematic-smectic transition den-

For the full Gay-Berne system, one has the strength of theity for T=0.95, B=0.90, which isp~0.22, the box is
external orienting field as an additional state variable. For roughly seven molecules long by ten molecules wide. At the
the caseB=0.90, similar results to those for the perfectly higher transition densities which occur for lower external

ordered particles are obtained. Whereaép) increases rap-
idly with a critical exponent in good agreement witls 3,

field strengths, the maximum correlation lengths are corre-
spondingly shorter. Thus, the system may simply be too

72(p) and n3(p) display regular behavior in the presmectic small to allow the critical behavior of/; to be detected.
region. Again, neithery;(p) nor y,(p) undergoes a drastic However, it is pleasing to see that the pretransitional increase
change prior to the phase transition, but here the relationshipf 7, and %, could be studied so well.
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