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Nonequilibrium-molecular-dynamics investigation of the presmectic behavior
of the viscosities of a Gay-Berne nematic liquid crystal

Loris Bennett and Siegfried Hess
Institut für Theoretische Physik, Technische Universita¨t Berlin, Berlin, Germany

~Received 31 March 1999!

Using the method of nonequilibrium molecular dynamics, the behavior of the Mie¸sowicz, Helfrich, and
Leslie viscosities as functions of temperature and density are investigated. In particular, attention is focused on
the region immediately preceding the nematic-smectic phase transition. The Mie¸sowicz viscosityh1 for the
orientation parallel to the direction of flow and the Helfrich viscosityh12 are both found to increase rapidly as
the phase transition is approached. In most of the cases investigated, a critical exponentn5

1
3 is found. Values

closer ton5
1
4 are also found, but in these cases, the errors are sufficiently large forn5

1
3 to be possible. No

nonregular behavior of the viscosity coefficientsh2 , h3 , g1, andg2 in the presmectic region was detected.
@S1063-651X~99!01710-9#

PACS number~s!: 61.30.2v, 61.20.Ja, 62.10.1s, 66.20.1d
of
th

ac

o

.

.
f a

pe
-
id

te

te

t-
pi

h

ne

e
ol

e
a

a

ata

a
den-
ade
for
re
ctic
th-

ter
or
n,
that
ity
od
re-

.

an

e of

-

ds
he
se
is
e

I. INTRODUCTION

For a nematic liquid crystal, the viscosity is a function
the average orientation of the molecules with respect to
flow velocity and its gradient. The shear viscosity is char
terized by four quantities: the Mie¸sowicz viscositiesh i ( i
51,2,3) @1#, and the Helfrich viscosityh12 @2#. Two further
quantities of interest, the Leslie viscositiesg1 and g2 @3#,
arise due to the torque acting on the molecules. These c
ficients depend not only on the temperature~or density!, but
also on the proximity of the system to a phase boundary
this work, attention will be focused on presmectic effects

Although the effect of temperature on the viscosity o
freely flowing liquid crystal was first measured@4# at the end
of the last century, measurements of the temperature de
dence of the coefficientsh i and g1 close to the nematic
smectic transition have only been available since the m
1970s@5–12#. Divergent behavior forh1 andg1 is found for
several substances, but it has often proved difficult to de
mine critical exponents.

Viscous flow in nematic fluids has also been investiga
using the methods ofequilibrium molecular dynamics~MD!
and nonequilibrium molecular dynamics~NEMD! at single
state points@13,14#. For perfectly oriented particles interac
ing via a soft-sphere potential with an additional anisotro
term of P2 symmetry a reversal of the inequalityh1,h2 for
temperatures just above the nematic-smectic transition
been found@15#.

The Miȩsowicz coefficients of the standard Gay-Ber
system have been obtained as a function of temperature
one density using MD and the Green-Kubo relations@16#.
Although a sharp rise inh1 was observed just aboveTna , the
critical exponent was not determined. Results have also b
obtained in the case of a soft-sphere potential plus a dip
dipole interaction@17#. Here, a reordering of the Mie¸sowicz
coefficientsh1 andh2 is found as the relative strength of th
anisotropic term is increased. Simulations using the G
Berne potential and a director-based coordinate system@18#
show good agreement with the results of@16# for a single
state point as far ash2 and h3 are concerned. However,
considerable discrepancy exists for bothh1 andg1.
PRE 601063-651X/99/60~5!/5561~7!/$15.00
e
-

ef-

In

n-

-

r-

d

c

as

for

en
e-

y-

Thus, up to now, there has been little simulation d
available on the presmectic behavior of the Mie¸sowicz coef-
ficients, with most of the work mentioned focusing on
single state point, rather than a range of temperatures or
sities. This is not surprising considering the demands m
on computational resources by even fairly simple models
anisotropic fluids. However, it was felt that taking a mo
detailed look at the way the presence of the nematic-sme
transition affects rheological properties would be a wor
while undertaking.

The work presented here is structured as follows: Af
this Introduction, the theoretical description of viscosity f
an anisotropic fluid is summarized. In the following sectio
the effect of temperature and density variation as well as
of an external field on the various coefficients of viscos
are discussed. In Sec. IV, details of the simulation meth
are given. Section V comprises the results and their interp
tation. The conclusions are presented in the final section

II. VISCOSITY COEFFICIENTS
OF A NEMATIC LIQUID CRYSTAL

In order to specify the various coefficients of viscosity,
ansatz must be made for the friction pressure tensor. Ifr is
the mass density of a fluid,v the flow velocity, and Cartesian
coordinates are used, then the equation for the balanc
linear momentum may be written as

r
d

dt
vm1“nPnm

eq 1“npnm50, ~1!

where the substantial time derivative is given byd/dt
5]/]t1vl“l . The total pressure tensorPnm has been sepa
rated into its equilibrium partPnm

eq and the friction pressure
tensorpnm .

For an isotropic fluid, the friction pressure tensor depen
only on the spatial derivatives of the velocity field and t
corresponding coefficients of viscosity. However, in the ca
of a nematic liquid crystal, the translational motion
coupled with the rotational motion. The orientation of th
nematic may be described by a so-calleddirector field
n(r,t).
5561 © 1999 The American Physical Society
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For the friction pressure tensorpmn an ansatz@19# is made
which takes into account the nematic symmetry and assu
linearity in the velocity gradient and the corotational tim
derivative of the directorN:

2pnm5a1nnnmnlnkGlk1a2nnNm1a3nmNn1a4Gnm

1a5nnnlGlm1a6nmnlGln1z1nlnkGlkdmn

1z2nnnm“lvl1z3“lvldmn , ~2!

where

Nm5
d

dt
nm2emnlvnnl . ~3!

The gradient of the velocity“nvm has been decomposed int
its isotropic, antisymmetric, and symmetric traceless part

“nvm5
1

3
“lvldmn1enmlvl1Gnm , ~4!

wherevl is the vorticity:

vl5
1

2
elab“avb , ~5!

andGnm the deformation rate tensor, which is the symmet
traceless part~denoted by@ #ST) of the velocity gradient ten-
sor:

Gnm5@“nvm#ST5
1

2
~“nvm1“mvn!2

1

3
“lvldmn . ~6!

The coefficientsa1 , . . . ,a6, known as the Leslie coeffi-
cients, and the coefficientsz1 , z2, andz3 all have the dimen-
sions of a viscosity. Thus, once the velocity and direc
fields are known, the components of the friction press
tensor may be calculated in terms of thea i andz i .

Decomposition of the friction pressure tensor yields

@pnm#ST522hGnm22h̃1@nnnlGlm#ST22h̃2 @nnNm#ST

22h̃3@nnnm#STnlnkGlk2z2 @nnnm#ST“lvl ,

~7!

pnm
a 5g1~nnNm!a1g2~nnnlGlm!a, ~8!

1

3
pll52hV“lvl2knlnkGlk . ~9!

The antisymmetric part of a tensorTnm is given by

Tnm
a 5

1

2
~Tnm2Tmn!. ~10!

The viscosity coefficients appearing in Eqs.~7!–~8! are re-
lated to those of Eq.~2! via

h5
1

2 Fa41
1

3
~a51a6!G , ~11!
es

c

r
e

h̃15
1

2
~a51a6!, ~12!

h̃25
1

2
~a21a3!, ~13!

h̃35
1

2
a1 , ~14!

g15a32a2 , ~15!

g25a62a5 , ~16!

hV5
1

3
z21z3 , ~17!

k5z11
1

3
~a11a51a6!. ~18!

The nine viscosity coefficients of Eq.~2! are reduced to
seven due to two Onsager symmetry relations, which yie

2h̃25g2 , ~19!

which is equivalent to

a21a35a62a5 , ~20!

and

z25k. ~21!

As mentioned already, the Mie¸sowicz coefficients of vis-
cosity are defined for certain orientations of the molecu
with respect to the applied shear:

2pyx5h i

]vx

]y
, i 51,2,3,4. ~22!

For Couette flow, the velocity field is given byv
5(Gy,0,0), whereG is the shear rate, and thus,]vx /]y
5G.

Hence, one obtains the following relationships betwe
the Miȩsowicz viscosities and the coefficients used in t
ansatz Eq.~2!:

h15
1

2
~a41a61a3!, ~23!

h25
1

2
~a41a52a2!, ~24!

h35
1

2
a4 . ~25!

The shear viscosity is characterized by four coefficients
this geometry and so a further quantity is needed. The H
frich viscosity,h12 @2#, is defined as

h1254h422~h11h2!, ~26!
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whereh4 is the viscosity obtained for the orientation in th
xy plane which makes an angle of 45 ° with respect to
direction of flow. This leads to

h125a1 . ~27!

The Leslie viscosities,g1 andg2, are given by

g15
1

G
~pxy

1 2pyx
1 1pxy

2 2pyx
2 ! ~28!

and

g25
1

G
~pxy

1 2pyx
1 2pxy

2 1pyx
2 !, ~29!

wherepmn
i is the (m,n) component of the friction pressur

tensor for the orientation parallel to thei axis. Equation~19!
implies

g25h12h2 . ~30!

The Miȩsowicz, Helfrich, and Leslie viscosities are a
accessible to experiment. Thus, values extracted from si
lations may be compared with experimentally obtained
sults. Furthermore, a theoretical prediction of the relat
sizes of theh i andg i based on a modified affine transfor
approach may be given in terms of the axis ratio of ellips
dally symmetric particles@20#. Thus one obtains information
about thea i , but thez i are not determined here.

III. TEMPERATURE AND DENSITY DEPENDENCE

Any quantification of changes in viscous behavior as
phase transition is approached requires a functional form
the dependency. According to the reaction-rate approach
dependency of the viscosity on the temperature in isotro
liquids is given approximately by an expression of t
Arrhenius type:

h5a exp~E/kBT!, ~31!

where E.0 is an activation energy,kB Boltzmann’s con-
stant,T the temperature, anda a constant@21#. In the nematic
phase, there will be an additional dependence on orie
tional order. However, the dependence of the order par
eter on temperature is weak compared to that in Eq.~31!
@21#.

A form for the variation of the viscosity as a function o
density may be given in terms of thefree volume, Vf5V
2Vm , where V is the specific volume of the fluid (V
51/r) andVm is the specific volume of the molecules@22#.
One then hash(V)5a exp@eVm/(V2Vm)#, or, in terms of the
density,

h~r!5a expS e
Vm

1/r2Vm
D , ~32!

wherea is the low density limit of viscosity@in general not
the same asa of Eq. ~31!#, ande a dimensionless paramete
Within the framework of a computer simulation,Vm may be
determined approximately from the form of the intermolec
e
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e

-

a
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he
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-

-

lar potential used and here was taken to be the volume o
ellipsoid of rotation with short and long axes of length 0
and 1.5, respectively, the unit of length being the short m
lecular diameter.

For an anisotropic fluid, the behavior is somewhat diffe
ent, particularly in the vicinity of a phase transition. In th
case of the nematic-smectic transition, there is expected t
a contribution to the viscosity which depends on thecoher-
ence lengthj of the smectic order, which is the distance ov
which the smectic order parameter persists in the nem
phase.

According to the mean-field approach@23#, the depen-
dence ofj on temperature is given by

j;~T2Tna!
21/2. ~33!

However, assuming the validity of de Gennes’s analogy
tween the nematic-smectic phase change and the nor
superfluid transition in liquid helium@24#, one infers

j;~T2Tna!
22/3. ~34!

The relationship between the coherence length and
Miȩsowicz viscosities is given by Ja¨hnig and Brochard@25#.
They find the expressions

g1
crit;j1/2, ~35!

a1
crit;g1

crit , ~36!

a2
crit5a4

crit5a5
crit50, ~37!

a3
crit5g2

crit5g1
crit , ~38!

where the superscript ‘‘crit’’ indicates that contribution o
the quantity due to thermal fluctuation of the smectic ord
parameter aboveTna . Thus, from the expressions for th
Miȩsowicz viscosities, and for the Helfrich viscosity, on
obtains

h1
crit;h12

crit;j1/2, ~39!

h2
crit5h3

crit50. ~40!

Thus,h1 , h12, g1, andg2 as functions of temperature are a
expected to diverge as the nematic-smectic transition is
proached. The total viscosity, including the Arrhenius ter
has the form

h~T!5a exp~e/T!1b~T2Tna!
2n, ~41!

wheren is 1
4 for the mean-field approach and1

3 according to
the helium analogy.

It must be borne in mind that increasing the temperat
will lead to an increase in the effective volume of the pa
ticles due to the increased rotational fluctuation. At const
pressure, the total volume can change and thus compens
for the effect on the free volume. In this case the Arrhen
law can be expected to apply and the viscosity will fall wi
increasing temperature. However, at constantvolume, no
such compensation can take place, and thus although
increase in translational kinetic energy will still act to redu
the viscosity, the accompanying increase in the rotatio
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kinetic energy will have the opposite effect. Therefore,
behavior is more complicated than in the case of cons
pressure. In particular, even a fall in viscosity with decre
ing temperature is possible.

Expressions corresponding to those for the tempera
may be obtained for the density dependence of the crit
components of the viscosities. A transition temperatureT* at
which a phase transition in a liquid crystal occurs will be
function of the density. Thus, assuming thatT* is a linear
function of r, one has

T* ~r!5T0* 1T* 8~r2r0!, ~42!

wherer0 is a particular density andT* 8 the derivative ofT*
with respect tor. For a certain temperatureT, this then
yields 12T* /T512@T0* 1T* 8(r2r0)#/T. Therefore,

12
T*

T
;12

r

r ref
, r ref5r01

T2T0*

T* 8
. ~43!

Thus, Eq.~43! means that the critical exponent for th
density dependency is the same as that for the tempera
dependency. Together with Eq.~32!, this leads to an expres
sion for the viscosity as a function of density very similar
Eq. ~41!:

h~r!5a expS e
Vm

1/r2Vm
D1b~rna2r!2n. ~44!

Again, for simplicity, the same symbols for the parametersa,
b, ande as in Eq.~41! have been used, although in gene
they are obviously numerically different. As above,Vm is the
specific volume of a molecule.

FIG. 1. The Miȩsowicz viscosities as functions of density fo
T50.95 with B50.90, N5500: h1 (d), h2 (m), and h3 (j)
with fits ~regular component , divergent component !,
andN51372: h1 (s).

TABLE I. Fit parameters for the density dependence withT
50.95,B50.90.

h1 , div. b50.0360.01 n50.3960.08 rna50.2360.01
h1 , reg. a50.0460.01 e52.3460.93
h2 , reg. a50.1360.02 e54.8060.30
h3, reg. a50.0560.01 e54.2860.24
e
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IV. SIMULATION METHOD

The simulations were performed using standard cons
temperature and volume molecular-dynamics techniqu
The Gay-Berne potential@26# was used with the paramete
m52, n51, k53, andk855 to model the intermolecula
interaction, the phase diagram for these values being kn
@27#. The equations of translational and rotational moti
were derived from the derivative of the potential with resp
to the intermolecular displacement vector and the molec
orientation vector, respectively. The potential was trunca
and shifted at a cutoff radius of 4s0, wheres0 is the width
of the molecules. The equations were then solved via a V
let velocity algorithm@28#. The mass and the moment o
inertia were chosen to be equal to unity, with the time s
being of length 0.0015(ms0

2/eLJ), whereeLJ is the reference
energy. Lees-Edwards periodic boundary conditions@29#
were used to generate the shear. The temperature de
from the translational motion was held constant by means
a profile-unbiased Gaussian thermostat@30#, which simply
involves rescaling the peculiar velocities. The rotational m
tion was not explicitly thermostated, as the coupling to t
translational motion was found to be strong enough to p
duce satisfactory equipartition of the total kinetic energ
Unless mentioned otherwise, 500 particles were used. H
ever, a few simulations were carried out withN51372, in
order to check for possible finite-size effects.

Newtonian viscosities were obtained by evaluating the
propriate components of the pressure tensor for various
ues of the shear rate~typically 0.01, 0.02, 0.03, 0.04, 0.05 i
reduced units! and extrapolating to zero shear rate under
assumption that there is no shear-rate dependency in
regime.

The orientation of the particles must be fixed in a cert
direction in order to allow the calculation of the Mie¸sowicz
coefficients. This can either be done by means of a constr

FIG. 2. h1 (d), h2 (m), andh3 (j) as functions of density
for T50.95 with B50.35, together with fits~regular component

, divergent component ! .

TABLE II. Fit parameters for the density dependence withT
50.95,B50.35.

h1 , div. b50.0460.02 n50.5660.23 rna50.3060.02
h1 , reg. a50.0860.02 e51.2560.71
h2 , reg. a50.1460.02 e54.4660.21
h3 , reg. a50.0860.01 e53.3260.16
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algorithm @31#, or via an additional potential term whic
makes the alignment of the molecules with the field energ
cally more favorable. Here, the latter approach was taken
the simulation box chosen to be twice as long in the direct
parallel to the field as in the perpendicular directions. T
effect on the viscosity of the variation of the field strength
the range before orientational saturation sets in has also
studied@32#.

The energy densityf M , which arises due to the couplin
between a molecule and an applied magnetic fieldB, is taken
to be

f M52
1

2
m0

21Dx~@uu#ST:@BB#ST!, ~45!

whereDx5x i2x' , x i andx' being the susceptibility par
allel and perpendicular to the director, respectively~cf. @33#!.
The orientation-dependent part reduces tof M

52 1
2 m0

21Dx(ulBl)2, and differentiating with respect toua

one obtains] f M /]ua52m0
21Dx(ulBl)Ba . It is conve-

nient to introduce a dimensionless quantityBa* :

Ba* 5ADx/m0As0
3/eLJBa , ~46!

which leads to] f /]ua52(ulBl* )Ba* . In the following, the
asterisk will be omitted. The torque due to the field exer
on particlei is then

Ti
M5~ui•B!ui3B. ~47!

V. RESULTS

A. Miȩsowicz coefficients

The Miȩsowicz coefficients as functions of density forT
50.95 and an external fieldB50.90 are shown in Fig. 1.

As the density increases, the ratio ofh3 :h1 becomes
smaller, with the two viscosities becoming nearly equal i
mediately before the nematic-smectic phase transition.

FIG. 3. g1 (d) with fit ( ) and2g2 (s) with fit ( )
as functions of density forT50.95 withB50.90.

TABLE III. Fit parameters for the density dependence withT
50.95,B50.90.

g1 a50.0760.01 e55.8660.35
2g2 a50.1260.02 e54.6960.46
i-
nd
n
e

en

d

-
e

results forN51372 agree reasonably well with those forN
5500, particularly for the higher densities. The fits, forN
5500, were performed using Eq.~44!. For h1 two fits were
made, one for the regular component using data up to a d
sity r50.20 and one for the divergent term over the fu
range. The difference between the two fits becomes p
nounced in the presmectic region. Only the regular term w
used to fith2 andh3. The fit parameters are given in Tab
I.

In Fig. 2, the viscosities are shown forB50.35, with T
50.95, as above. The most obvious difference is the den
at which the phase transition occurs. Again forh1, both the
regular component~using data up tor50.26) and the diver-
gent components were fitted, and forh2 and h3 only the
regular part. From Table I, the critical exponentn for B
50.90 is seen to correspond rather well to the helium an
ogy prediction of13 . For the weaker field,B50.35,n is rather
large, but the inaccuracy is such to allow1

3 ~Table II!. How-
ever, the result for the transition density is in agreement w
that inferred from plots of structural data as a function
density. Comparing the two figures, one sees that
strength of the field has a large effect on the density at wh
the nematic-smectic transition occurs.

Data are available for the dependence of the Mie¸sowicz
viscosities on temperature. However, due to the weaknes
this effect at constant pressure, no results are given here

B. Leslie and Helfrich viscosities

The dependence of the Leslie viscositiesg1 andg2 on the
density for B50.90 is shown in Fig. 3. One sees that t
relationshipug2u.g1 is valid throughout the nematic region
although the fits suggest that there is crossing of the visc
ties for densities very close to the transition density.

There is, however, no indication that either of the tw
quantities diverge, as has been found experimentally and
dicted theoretically. The fit parameters are given in Table

FIG. 4. g1 (d) with fit ( ) and2g2 (s) with fit ( )
as functions of density forT50.95 withB50.35.

TABLE IV. Fit parameters for the density dependence withT
50.95,B50.35.

g1 a50.0960.01 e54.7860.19
2g2 a50.1260.02 e54.4660.27
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The corresponding results forB50.35 can be seen in Fig
4 ~see also Table IV. Again, the absolute value ofg2 remains
larger thang1, although the convergence point is beyond t
transition density. Here, too, the behavior of the viscositie
described better by a fit of the Arrhenius form, rather th
one with a divergent term.

As can be seen in Fig. 5, the Helfrich viscosity diverg
as the temperature is reduced towards the nematic-sm
transition. Sinceh12 can be of either sign, Eq.~41! was
modified in anad hoc manner by retaining the divergen
term but replacing the Arrhenius term by a constant te
thus yielding

h12~T!5b~T2Tns!
2n1c. ~48!

However, the parameters of the fit using Eq.~48! were
subject to very large errors. Thus, the data were fitted for
specific, fixed values ofTns , both of which were deemed t
be plausible on the basis of the structural data. The resu
curves are shown in the figure and the ensuing parame
are given in Table V.

As one sees, the errors are rather large. However,n seems
rather insensitive to the exact position of the phase cha
and for both the transition temperatures chosen,1

3 is the
more likely value forn, although 1

4 cannot be ruled out
particularly since the statistics are rather poor close to
phase transition.

VI. CONCLUSIONS

For the full Gay-Berne system, one has the strength of
external orienting fieldB as an additional state variable. F
the caseB50.90, similar results to those for the perfect
ordered particles are obtained. Whereash1(r) increases rap-
idly with a critical exponent in good agreement withn5 1

3 ,
h2(r) andh3(r) display regular behavior in the presmec
region. Again, neitherg1(r) nor g2(r) undergoes a drasti
change prior to the phase transition, but here the relation

FIG. 5. h12 as a function of temperature withr50.275 andB
50.35 forTns50.92 ( ) andTns50.89 ( ).
e
is
n

s
tic

,

o

g
rs

e,

e

e

ip

ug2(r)u.g1(r) is fulfilled. However, the difference be
comes smaller as the transition is approached.

For B50.35,h1(r) exhibits critical behavior at the tran
sition, but the error is so large that bothn5 1

4 andn5 1
3 are

possible. Bothh2(r) and h3(r) approximately obey an
Arrhenius law, as dog1(r) and g2(r), with ug2(r)u
.g1(r). Both n5 1

4 and n5 1
3 are possible values of th

critical exponent forh12(T).
Thus, critical exponents for the viscositiesh1 and h12,

and, hence for the correlation length, in broad agreem
with de Gennes’s helium analogy have been found. Ho
ever, neitherg1 nor g2 display a change of behavior at th
phase transition, which is in contrast to the prediction
Jähnig and Brochard, and, forg1, with experimental evi-
dence.

To explain this one may consider the relative magnitud
of the critical contributions. Using Eq.~20! to eliminatea6

from Eq. ~23!, one hash1
crit5g1

crit and

h12
crit5a1

crit5F S j i

j'
D 2

21Gh1
crit , ~49!

wherej i andj' are the correlation lengths parallel and pe
pendicular to the director, respectively. Experimental valu
for j i /j' range from about 3 to around 6@7#. Thus, any
presmectic rise in viscosity should be strongest forh12. The
reason critical behavior is seen forh1 but not forg1 may be
connected with the fact that, whereash1 is determined from
a single component of the pressure tensor,g1 is calculated
from a linear combination of four components@cf. Eq. ~28!#
and thus subject to much greater error. Whileh12 is also
obtained from a linear combination of components, the eff
for this viscosity is expected to be many times larger th
that for h1 or g1.

Obviously no true divergence may be seen in the co
puter simulation, since any effect due to increasing corre
tion lengths is obviously limited by the finite size of th
simulation box. Thus, at the nematic-smectic transition d
sity for T50.95, B50.90, which is r'0.22, the box is
roughly seven molecules long by ten molecules wide. At
higher transition densities which occur for lower extern
field strengths, the maximum correlation lengths are co
spondingly shorter. Thus, the system may simply be
small to allow the critical behavior ofg1 to be detected.
However, it is pleasing to see that the pretransitional incre
of h1 andh12 could be studied so well.

TABLE V. Fit parameters for the temperature dependence
h12 with r50.275,B50.35.

Tns b c n

0.89 1.1461.34 24.2861.85 0.3460.19
0.92 0.8261.06 23.6861.39 0.2960.20
ux,
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